
Semantic HTML
© Ben Hunt, Scratchmedia, 2008

Contents

● Introduction to semantic HTML

● Why semantically correct HTML is better (ease of use, accessibility, SEO and repurposing)

● Comprehensive list of HTML tags, which to avoid and which ones to use, each with their
semantically appropriate uses

● Tips for writing better semantic HTML, including a neat DHTML trick for automatically
wrapping HTML tags in new tags

● Worked examples

What is Semantic HTML?
Semantics is the study of meaning: how meaning is created and applied to signs. “Why does X mean X?” is a
question of semantics.

HTML is the markup language that we use to write web pages. It's understood by standard web browsers,
as well as dozens of other types of “user agents”, including mobile phones, search engine spiders, aural
browsers etc.)

HTML consists of two types of things:

● Tags

● Text content

A few tags can be content of their own (like images, Flash movies, or metadata), but most HTML tags are
used to apply structure to content.

Semantic HTML, or “semantically-correct HTML”, is HTML where the tags used to structure content are
selected and applied appropriately to the meaning of the content.

So, if you're wanting your HTML to be semantically-correct...

A <p></p> paragraph tag pair should only be used to indicate a paragraph (which is a structural
concept). It should never be used to apply space to a web page. Never, ever, use a series of <p>
tags to create space!

The HTML tags (for bold), and <i></i> (for italic) should never be used, because they're
to do with formatting, not with the meaning or structure of the content. Instead, use the
replacements and (meaning emphasis), which by default will
turn text bold and italic (but don't have to do so in all browsers), while adding meaning to the
structure of the content.

© Web Design from Scratch, 2008

Always separate style from content
HTML tags should never be used to apply presentation – that's the job of CSS (Cascading Style Sheets). See
http://webdesignfromscratch.com/how-html-css-js-work-together.cfm to learn more about how HTML, CSS
and JavaScript fit together in web pages. (Note, perfect production practice also removes all JavaScript
functions and event handlers from the markup as well!)

Why semantically correct HTML is better
Writing semantic HTML brings a wide range of benefits:

● Ease of use

● Accessibility

● Search Engine Optimisation

● Repurposing

Ease of use

First of all, semantic HTML is clean HTML. It's much easier to read and edit markup that's not littered with
extra tags and inline styling. Clean markup also saves time and money when other people have to interact
with it – say, a web developer who has to implement your page template in a content management system
or any other web application.

A corollary benefit is that your HTML files are also smaller, so they load quicker.

Accessibility

Unless you've had to interact with HTML markup through media other than your web browser, it doesn't
seem obvious to imagine that your web pages have a life outside the browser window – but they very often
do. Web pages can be consumed by humans and machines in lots of different ways!

When you separate visual aspects (i.e. style) from the actual meaning of a document, you end up with a
document that always means the same thing. The way it's presented or consumed can vary. One common
technique web designers use is to apply different style sheets for different media. For example, you can
apply a certain stylesheet only when a document is printed to paper, another one when it's viewed on
screen, and yet another when it's accessed by a text-to-speech aural browser.

A text-to-speech reader also understands the tags or but it treats text output
with those tags very differently to the way a visual browser responds. The TTS reader adjusts
vocal tone or volume, rather than contrast or text style, which conveys the same meaning but
through a different medium.

Search Engine Optimisation

Search engine spiders and crawlers, like Googlebot, represent another genus of user agents. They also
consume web page content, in an attempt to discern the meaning within.

When a crawler finds a web page, it stores its assessment of what the page is about on an indexed
database to use when matching people's search queries. The big question is – how do search engines
match search terms to known pages to create a prioritised list?

© Web Design from Scratch, 2008

http://webdesignfromscratch.com/how-html-css-js-work-together.cfm

Of course, they all do it a bit differently, but one of the keys to Search Engine Optimisation is to use plain
old common sense. If you were a search engine, how would you do it? If you work through the problems a
search engine faces, a few things soon become clear, often easily expressed prefixed with “all other things
being equal...”.

Let's say you have two web pages, each with exactly the same text content (10 kilobytes).

One of the pages has an additional 5KB of HTML markup, neatly annotating the semantic meaning
in the content.

The second page has 30KB of additional markup, with inline styles, lots of nested <div> tags,
and decorative imagery.

Now, the more graphically intense page might look better to human visitors (might!), but if each page
contains the search term “bluebottle” 5 times, which would you (pretending to be a search engine) judge
was most relevant to someone searching for “bluebottle”?

Clearly, it's the first, more lightweight page, for a few possible reasons:

1. The keyword density of the lightweight page is greater. It features the search term five times in
15KB of markup, whereas the second page features it five times in 40KB of markup. Whatever the
additional markup is for (the search engine might not be able to tell), it doesn't seem to be about
“bluebottle”.

2. Each occurrence of the search term is likely to be higher up towards the start of the document in
the lightweight page than it is in the 40KB page. All other things being equal, the earlier you find a
search term within a document, it's more likely that the document is about that term, or the term
is more prominent in the document's content.

3. Assuming that the first document is neatly marked up with semantically correct HTML, it's more
likely that the search term will be placed inside a higher-value tag (such as a heading, or link) than
in a more graphical page (which might use an image as a link, perhaps without a proper alt
attribute).

Repurposing

When your markup (content, with meaning) is separated from your styles (style sheets for different media),
obviously the content can be understood more easily by all user agents. That means not only user agents
you already know about, but ones you don't yet know about (like automated crawlers that create custom
RSS news feeds on a certain topic, or image- or video-specific search engines), as well as others that have
not yet been invented!

The last couple of years have seen mixing and mashing content emerge as a major feature of new web sites
and applications. This can happen without the knowledge of the original site owner, but in most cases this
freedom of content to move around the web, adapting to various media, is beneficial to the original
creator.

Often in these situations, the content taken from a web page is formatted differently on the new remixed
page, which makes it all the more important to remove any style content from the markup itself. (Note that
inline styles, applied directly within HTML tags, override any other styles implemented through separate
stylesheets, and so they would have to be stripped off programatically.)

Clearly, it's easier to grab and re-use content from any source, and apply it to any medium, when it does
not contain any hard-coded style information, and also when it does contain semantic markup that can
help a computer program understand the meaning and structure of the content.

© Web Design from Scratch, 2008

© Web Design from Scratch, 2008

Comprehensive list of HTML tags with their semantically
appropriate uses
I haven't listed absolutely every HTML tag ever, as some of them are too obscure to be worth mentioning.

Tag What it is When to use it

<a> Anchor (most commonly a link) Vital. Use to create links in content. Use the title
attribute whenever the contents of the <a>...
pair do not accurately describe what you'll get from
selecting the link. Title attribute often displays as a
tooltip in visual browsers, which may be a helpful
usability aid.

<abbr> Defines an abbreviation Works in a similar way to <dfn> and <acronym>,
using a title attribute (displays a tooltip in standard
visual browsers). e.g. <abbr title=”Hypertext
markup language”>HTML</abbr>

<acronym> Defines an acronym Works in a similar way to <abbr> and <dfn>, using a
title attribute (displays a tooltip in standard visual
browsers).

<address> Used for marking up a physical (e.g.
mailing) address

Not commonly used. Recommend looking into
microformats, which allow for more detail and
interoperability.

<applet> Inserts a Java applet The old way to insert a Java app. Use <object>
instead today.

<area> Hotspot in image map Avoid image maps where possible. Occasionally
necessary.

<base> Specifies the base location of the
document.

Use only when necessary. Adjusts any relative links and
paths within the document.

<basefont> Sets default font size Display info – never use it

<big> Larger text Display info – never use it

<blink> Makes text blink You go to hell if you use this

<blockquote> Large quoted block of text Use for any quoted text that constitutes one or more
paragraphs (note: should contain <p> tags as well). Use
<q> for quotations within a paragraph. Often used in
conjunction with <cite> to cite the quotation's source.

<body> Document body Essential (unless you're using frames)

 Line break This is arguably display information. Still in common
use, but use with restraint.

 Bold text Display info – never use it

<button> Used for a standard clickable button
within a form

Often better than <input type=”button” /> or
<input type=”submit” />, as it allows you to
assign different styles based on the HTML element
alone, whereas differentiating style based on the type
of input is less well supported.

<caption> Caption for a table: describes the
table's contents

The correct way to assign a title to a table

© Web Design from Scratch, 2008

<center> Centred block Display info – never use it. Use <div> or some other
block-level tag with the style text-align:center instead

<cite> Defines a citation Defines the source of a quotation (in conjunction with
content in <q> or <blockquote> pairs).

<code> Defines an extract of code Not commonly used. Similar to <pre> tag, but collapses
consecutive white spaces and line breaks in the source.

<col> Identifies a particular column in a
table

Can be very useful. e.g. <col class=”namecol”>
can be applied to each first column in a series of tables,
then the width of each column may be set to be equal
in the stylesheet, overriding the table's natural
tendency to adjust its own column widths to fit its
contents.

<dfn> Definition of a term Works in a similar way to <abbr> and <acronym>,
using a title attribute (displays a tooltip in standard
visual browsers).

<dir> Directory list Now deprecated. Use a standard or other list
instead.

<div> Division Specifies a logical division within a document. Use it to
separate or identify chunks of content that are not
otherwise distinguished naturally using other tags.
One of the most common HTML tags.

<dl> Definition list Contains one or more definition-term / definition-
description pairs.

<dt> Definition term Used as part of a <dt></dt><dd></dd> pair within a
definition list (<dl></dl>)<dd> Definition description

 Emphasis Commonly used in place of the old <i> (italics) tag to
indicate emphasis (but less than)

 Font settings Display info – never use it

<form> Input form Essential for data input

<h1> Level 1 header Aim to have one H1 on each page, containing a
description of what the page is about.

<h2> Level 2 header Defines a section of the page

<h3> Level 3 header Defines a sub-section of the page (should always follow
an H2 in the logical hierarchy)

<h4> Level 4 header Etc. Less commonly used

<h5> Level 5 header Less commonly used. Only complex academic
documents will break down to this level of detail.

<h6> Level 6 header Less commonly used

<head> Document head Essential. Contains information about a page that does
not constitute content to be communicated as part of
the page.

<hr> Horizontal rule Display info with no semantic value – never use it.
“Horizontal”, by definition, is a visual attribute.

<html> Core element of every web page.

 Show an image Vital. Always use the alt or longdesc attributes
when the image has content value

© Web Design from Scratch, 2008

<input> Input fields within forms Vital. (I prefer to use <button> for buttons and submit
buttons though)

<isindex> Old type of search input Not really used any more. Use <form> instead.

<i> Italicised text Display info – never use it

<kbd> Keyboard input Display info – never use it

<link> Defines a relationship to another
document

Commonly used to reference external stylesheets, but
has other minor uses

 List item Specifies an item in an unordered or ordered list (
or)

<map> Client-side imagemap May have occasional value, but only use when
absolutely necessary

<marquee> Makes text scroll across the screen See <blink>
<menu> Menu item list Deprecated. Do not use. Use other standard list types

instead.

<meta> Meta-information Useful way to insert relevant information into the
<head> section of the page that does not need to be
displayed.

 Ordered list Type of list where the order of elements has some
meaning. Generally rendered with item numbers (best
managed with CSS).

<option> Selection list option Vital for options within a drop-down control.

<param> Parameter for Java applet Used in conjunction with an <object> or <applet>
tag to pass additional setting information at runtime.

<pre> Preformatted text Renders text in a pre-formatted style, preserving line
breaks and all spaces present in the source. May be
useful. (This one's a paradox, as it is strictly display info
that applies only to visual browsing, but it's still so
commonly used and useful that I'm hesitant to advise
against using it.)

<p> Paragraph Only use to denote a paragraph of text. Never use for
spacing alone.

<q> Short quotation Use for inline quotations (whereas <blockquote>
should be used for quotations of a paragraph or more).
Often used in conjunction with <cite> to cite the
quotation's source.

<samp> Denotes sample output text Similar to the <code> tag. Rarely used. Avoid.

<script> Inline script (e.g. JavaScript) It's better to have all scripts as separate files than to
write inline or in the <head> section, however still has
its uses.

<select> Selection list A drop-down selector for a form.

<small> Smaller text Display info – never use it

 An inline span within text Use to apply meaning (and style) to a span of text that
goes with the flow of content (whereas a <div> tag is
block-level and breaks the flow)

<strikeout> Display info – never use it

 Strong emphasis Use this instead of the old tag.

© Web Design from Scratch, 2008

<style> CSS style settings Normally used in <head> section of a page. Try to use
external stylesheets, to enable you to apply different
styles for different output media.

<sub> Subscript text Arguably display info – recommend using alternative
tags (e.g. <cite>). May be required in some academic
uses, e.g. Chemical formulas.

<sup> Superscript text

<table> Table Use for repeated data that has a naturally tabular form.
Never use for layout purposes.

<td> Table data cell A cell containing actual data. If a cell actually contains a
descriptor or identifier for a row or column, use a <th>
(table header) tag, not a <td>. This usually applies to
column headers (within a <thead>), column footers
(within a <tfoot>), as well as row headers (usually the
first cell in a row in the <tbody>).

<textarea> Multi-line text input area in a form Essential

<th> Table column or row header cell May appear in a <thead> (to denote a column header
cell), <tbody> (to denote a row header), and in
<tfoot> (to denote a column foot cell, e.g. a total)

<tbody> Indicates the main body of a data
table

It is always worth using this tag, as well as using
<thead> and <tfoot> where appropriate.
Note that it is permissible to have more than one
<tbody>, <thead>, and <tfoot> in the same table.

<thead> The head section of a table The place to put column header cells (<th>)

<tfoot> The foot section of a table Good place to put e.g. summary data, such as totals.
Note that it goes before the <tbody> tag!

<title> Document title Essential

<tr> Table row Essential with tables

<tt> “Teletype” - simulates typewriter
output

Similar to <pre>, except that it collapses white space
like normal HTML (whereas <pre> leaves all consecutive
white space intact). Avoid if possible

 Unordered list Essential. Use for lists where the order or items has no
particular importance.

<u> Underline text Display info – never use it

<var> Variable in computer code Obscure tag, may only be useful in academic
documents. Avoid.

© Web Design from Scratch, 2008

How to write better semantic HTML
Here are my tips to producing better HTML markup.

● HTML first, then CSS!

● Perfect semantic correctness isn't necessarily best!

● Consider other applications of your document (other media, plus DOM manipulation).

● Semantics applies to IDs and Classnames, as well as tags!

● When to use an ID, when to use a Class.

● Consider using DHTML to insert tags for complex design.

HTML first, then CSS!

The single most useful suggestion I have for writing better HTML is to do it first, before you start applying
any styles, or even thinking about the styles.

This is quite a challenge, I know, but this method really makes you think about what you write in your HTML
tags! Basically, you're forcing yourself to compose HTML based on the content alone, separately from the
problems of CSS production (“How do I achieve that effect?”), and only when the HTML is written do you
start to address the page styling.

You can't always implement every design with minimal, basic HTML, but it's a really worthwhile goal. (There
are other techniques I'll demonstrate that can help you implement complex styles that would normally
require additional nested HTML elements.)

One good way to know when your HTML markup is right is to show it to another designer or
developer, and ask them to read it out loud, explaining what each piece of content means.

Perfect semantic correctness isn't necessarily best!

This may seem to go against the point of the book, but it's worth saying. The fact is that, as with anything in
web page production, there's never just one best way to achieve anything. And web pages are complex
creations, with more considerations and dependencies than the stuff that's markup-related.

The semantically perfect HTML page would have the absolute minimum number of tags, with the minimum
of description (by way of IDs and Classnames) required to communicate the meaning. But the absolute
minimum may not always also be useful, so some pragmatism is also required.

The fact is that sometimes you do need to put in one or two extra tags that may not be required to assign
meaning, but simply make your life as a CSS producer so much easier, so it's worth the trade-off.

You may also need to insert IDs or classes to facilitate DHTML coding, or for the benefit of a middleware
developer or 3rd-party system.

At the end of the day, there's no actual agreed standard for semantic markup.

It's your page, so do what you feel is best.

© Web Design from Scratch, 2008

Consider other applications of your document (other media, plus DOM
manipulation)

Always bear in mind that your web page won't necessarily only ever be a web page. When you publish
content online today, it becomes part of a general mass of information, which may be consumed using all
kinds of browsers and other devices, by humans as well as programs.

Another way to interact with an HTML document is by querying and manipulating the DOM (Document
Object Model) using DHTML or other methods. We'll see an example of DHTML manipulation later. Pure,
semantic HTML makes all programmatic interaction and manipulation much easier.

Semantics applies to IDs and Classnames as well as tags!

Semantic HTML doesn't stop with tag selection.

Structural meaning is also contained within tag parameters, including alt parameters, IDs and Classnames.
These should follow some basic common-sense rules.

In the same way that you should only use a table for structuring tabular data, and not for layout purposes,
every HTML element should only have classnames that describe accurately what the element does or
contains.

For example, you have a side column on the left of your main content, which contains links to
selected sections of your site, plus advertisements. First instinct may be to call the column
id=”leftCol”, but is that correct?

The key question to ask is:

What is the property of this element that differentiates it from other content?

Then, try to move up the hierarchy of meaning, striving for a simpler and more generic descriptor, until you
can get no more generic and simple without losing the specificity of the descriptor, and you'll have your
answer.

Taking our side left column as an example:

● Obviously we need to give the left column a useful classname or ID parameter that we can use in
CSS to shift it alongside the main content.

● “Left” is not an appropriate descriptor, as with CSS you (or someone else) might choose to switch
the content over to the right hand side. Left-ness is not a core property of the content itself – it's
display property, so has no place in semantic markup.

● What about “column”? Well, taking the same strict stance, a column is actually a visual
organisation of content, it's a style property, not a semantic property, so really we shouldn't use
that either. (Some smart CSS layouts can switch from laying content out side-by-side in columns,
where width allows, to displaying the content in the additional or minor column beneath the main
content in narrower displays.)

● So, it's not left-ness, or side-ness, and it's not column-ness, because these are all stylistic attributes.
What property is it, then, of our left-hand column that differentiates it semantically from the main
right-hand content? Well, there's never just one right answer, but you might find that <div
class=”minor-content”> or class=”secondaryContent” would fit the bill. Something like this
would be meaningful enough to a human reader, or indeed a computer program, and would still be

© Web Design from Scratch, 2008

flexible enough to make sense if the content were rearranged for some medium, or even if part of
it were borrowed for publication elsewhere.

When to use an ID, when to use a Class

This is another interesting area. I'm finding it appropriate to use more classnames these days, where I
might have used IDs in the past.

What's the difference between IDs and classnames?

Strictly, there should only ever be at most one element with any particular ID on a page. Now, this doesn't
matter to CSS. You could have several <p id=”callout”> on the same page, and the CSS would work just fine.

But IDs aren't only to do with CSS! They're actually much more important and useful in the world of
Dynamic HTML (DHTML), where you can programatically manipulate the document using the DOM
(Document Object Model).

In DHTML, you can grab any element using the code:

var someParagraph = document.getElementByID(“para1”) ;

If you use any ID more than once, getElementByID can't work.

What about classnames? There are a couple of obvious differences first-up.

● You can re-use the same classnames several times within the same document (page)

● An element can have multiple classnames (separated with spaces, e.g. <ul class=”nav special
banana”>)

That's all well and good, but what other differences are there in the context of semantic HTML?

Basically, use a Class to describe a property of an element (if not already implicit in its tag type).

Use an ID to identify the unique element itself. This is the element's core, unchangeable essence.

So, going back to our side column example from earlier. We settled on the “minor content-ness” of the
element as being the most generic-yet-useful differentiating feature. Now, is this the core essence of the
thing, or is it a property?

I guess that it's theoretically possible to stick in a second side column (which might turn into some other
kind of formatting device under different circumstances), so the “minor_content” should arguably be a
Classname of the element, not its ID (which is what I used in the example anyway). But it's common to find
the ID parameter used for things that are actually circumstantial properties rather than core essence (most
of the sites I've ever coded probably do it!), so look out for that in your own semantic HTML code.

© Web Design from Scratch, 2008

Consider using DHTML to insert tags for complex design

Let's say your design has a number of boxes with 4 rounded corners. The boxes can be any height,
depending on how much content is in them, and also any width, because the layout is zoom (i.e. the master
width is defined using em units rather than pixels or percents, so it goes wider or narrower if the browser
base font size is changed).

Normally, you'd use the CSS background or background-image property to achieve this, and you'd need
to wrap your content in 4 different elements, as each element can only have one background image. You'd
end up with something like this in your HTML:

<div class=”boxout topleft”>
<div class=”bottomleft”>

<div class=”bottomright”>
<div class=”topright”>

Content goes here...
</div>

</div>
</div>

</div>

The problem, of course, is that you're using 4 nested HTML elements to create what is essentially one thing,
because of the limitations of CSS. This is not semantically correct HTML!

The problem is that, while the page might work fine when viewed in a regular web browser, there's a lot of
code noise in there that other user agents have to ignore or strip out. Plus, it's increasing file size and
makes your files more clunky etc. etc. If you have 10 such boxes on a page, it's 10x the clunkiness!

So, the designer insists that 4 rounded corners are essential to the design, but that's only the case in a web
browser, not in a phone, RSS, or aural user interface. How do we satisfy the requirement to implement the
web design as specified, while fulfilling our urge to be a pure shining semantic production angel?

The solution I'd suggest is to use correct minimal markup to start with, and then to manipulate the
document programatically using JavaScript (DHTML), essentially wrapping the contents in 4 additional divs.
This code would be kept in a separate JavaScript file, run when the page loads, and would only apply to
web browsers. Other user agents could happily ignore it, and they'd just get the minimal, clean, semantic
markup.

Here's the markup I'd like to use:

<div class=”boxout”>
Content here...

</div>

Now we just need a JS function that finds any elements with the clasname “boxout”, and wraps its contents
inside 4 extra divs (could do it with 3, but let's use 4 for simplicity).

© Web Design from Scratch, 2008

Here's my starting HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>

<head>
<title>DHTML Wrapper example</title>
<script type="text/javascript" language="javascript" src="../core.js"></script>
<script type="text/javascript" language="javascript" src="dhtml_wrapper.js"></script>

</head>
<body>

<div class="boxout">
Content goes here...

</div>
</body>

</html>

I'm calling in 2 JavaScript files:

● core.js (which contains a bunch of handy DHTML/JS functions), then

● dhtml_wrapper.js (This one will depend on some of the functions in core.js, so core must come
first. Just including this file should cause the wrapping to happen.)

Here's what I want it effectively to become (just showing the body contents; the new bits are in bold):

<div class="boxout">
<div class="topleft"><div class="topright"><div class="bottomright"><div class="bottomleft">

Content goes here...
</div></div></div></div>

</div>

© Web Design from Scratch, 2008

Here's the JavaScript code for dhtml_wrapper.js. I won't explain exactly what it does in this book – it'll be
part of my next DHTML guide.

To use it, you just need to add a wrapelements() function all inside the setup() function.

The line below marked with the // ***** comment indicates how to call the function. It says, “Wrap any
elements of type “div” that have the class “boxout” with some more elements of type “div”. Then the last
parameter gives a list of new div classnames to use. I've put a comma-separated list of 4 classnames here,
so it'll create 4 new divs, nested inside each other, with the target divs (i.e. the “boxout” divs) in the centre.

Note that the classnames at the beginning of the list will be the central elements, with the rest of the list
wrapped around the outside.

(You can find the source files at http://webdesignfromscratch.com/ebooks/semantic-html/dhtml-wrapper/,
if you'd like to have a play yourself.)

addEvent(window, "load", setup, false);

function setup() {
wrapElements("div", "boxout", "div", "topleft,topright,bottomright,bottomleft") ; // *****

}

function wrapElements(targetElType, targetElClass, newElType, newElClasses) {
var newElClassList = newElClasses.split(",") ;
// Look for any div elements with className
var targetElements = getElementsByClassName(document, targetElType, targetElClass) ;
// For each element found...
for (var i=0; i<targetElements.length; i++) {

// Get the target element
var elementToWrap = targetElements[i] ;
// Get the wrappable element's parent element
var targetElParent = elementToWrap.parentNode ;
// Work out method to reattach later..
var targetElPosition = 0 ;
for (var sibCount=0; sibCount<targetElParent.childNodes.length; sibCount++) {

if (targetElParent.childNodes[sibCount] === elementToWrap) {
targetElPosition = sibCount ;
break ;

}
}
// For each className in the wrapping list
for (var j=0; j<newElClassList.length; j++) {

// Create the new element
var newElement = document.createElement(newElType) ;
// Add the class name
newElement.className = newElClassList[j] ;
// Put the wrappable element inside the new element
newElement.appendChild(elementToWrap) ;
// Use the new combo as the thing to wrap from now on
elementToWrap = newElement ;

}
// Finally, put the new combo inside the parent element
if (targetElPosition == 0) {

targetElParent.appendChild(elementToWrap) ;
}
else {

targetElParent.insertBefore(elementToWrap,
targetElParent.childNodes[targetElPosition]) ;

}
}

}

© Web Design from Scratch, 2008

http://webdesignfromscratch.com/ebooks/semantic-html/dhtml-wrapper/

Worked example
Here's a sample page design. I'll work through and document my thought processes as I compose the HTML
markup (prior to slicing & CSS coding).

First questions

My normal approach is to start working from the outside in, to get the major structure together. Then, I'll
normally just go from the top of the HTML and work through to the end.

The first question a producer will always ask is: Is the design fixed-width, liquid (i.e. full-width), or
zoom-width? Of course, that's a display question, so shouldn't affect HTML semantics!

You may find you have to go back and adjust HTML to be able to implement certain design
features within an acceptable time & complexity, and within your CSS capabilities, but that's your
pragmatic decision to make.

© Web Design from Scratch, 2008

Fortunately, the design has a simple background, which tiles horizontally only, so I know that will apply
easily to the <body> tag.

The next question I'll normally ask is: In what order shall I present the structure in the HTML document?

CSS allows producers some flexibility over the flow of the HTML (depending on the layout) to re-
order page elements, for example, putting a right-hand main content column before a minor left-
hand column in the markup. There are SEO benefits to doing stuff like this. You should try to get
your content, with its keywords, as high up the HTML as possible, within reason.

With this design, I want the main navigation to come first, followed by the main content.

I think I'd prefer to put the “Quick links” side bar after the main content in the flow. The “Your home is at
risk...” disclaimer can come last of all.

I'll put the two links “Log in” and “Site map” first of all.

It's helpful to put yourself in the position of a person with a serious visual impairment who's using
an aural text-to-speech browser to read your page out loud. What will they hear first on every
page? When will the experience get annoying? How quickly can you get them to the most useful
content or links that will help them proceed as quickly as possible to what they really want?

Initial structure

Let's assume we're going for a zoom or fixed-width layout (the HTML is the same). For this, we'll need one
container to set the master width (in ems for zoom, or in pixels for fixed). The body tag will probably be
align-center, to get the master container to float in the middle of the window.

Here's the initial HTML structure. I've given my container div an ID “page” as that's what it is. Alternatively,
I might consider an ID that is less visual-specific, like “structure”...

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>

<head>
<title>Mortgage Service Company, UK advice on mortgages and insurance</title>
<link rel="stylesheet" type="text/css" href="styles.css" />

</head>
<body>

<div id="page">
I'll put content here...

</div>
</body>

</html>

The <title> tag describes the home page quite succinctly, containing some relevant key words.

© Web Design from Scratch, 2008

Navigation

Let's stick in the 2 groups of top navigation: The primary nav, and what I'd call “secondary global nav” (i.e.
navigation that's available on every page, but which doesn't describe the information architecture
(sections) of the site. Here, “Log in” is a function, and “Site map” is just a single generic page.

<div id="page">
<ul id="primaryNavigation">

About
Mortgages
Protection
<a href="insurance.html" title="Household insurance

deals">Insurance
Loans
Conveyancing
Cut your bills

<ul id="secondaryNavigation">

Log in
Site map

</div>

I've used unordered lists () for both navigation sets. Unordered lists are semantically appropriate for
any logical, sequential collection of simple elements where the order does not have any particular meaning.
If the order of the elements is significant, an ordered list () is more appropriate; if the elements are
complex, i.e. made up of several other elements, then a table or just a sequence of divs may be best.

 I've used IDs for both lists, as the names describe what they are, not properties of the things. I've also put
the primary nav first in the flow, as it's arguably more useful to most visitors. The positioning can be fixed
using CSS easily enough.

Notice that the links contain text instead of images. This is the right thing to do, as the text is more broadly
meaningful and useful than an image. In the CSS, I could use image-replacement techniques to hide the text
and show background images for each link.

Site identity and banner

Next in the visual we have two images: the site ID/logo, and an ad banner. I have a choice here whether to
put the images next in the flow, or to move them after the main page content. One consideration is
whether

At the same time, I'd ask myself whether this would be repetitive for someone listening to this page. Now,
if the banner ad is the same on every page, then perhaps hearing the same alt text time and again will be
unhelpful.

© Web Design from Scratch, 2008

Some designers put the site identity as the <h1> tag on every page, but this is wrong. The
contents of your <h1> are very valuable for SEO, so each page should have key words in the <h1>
that specifically relate to what the page is about, so the contents need to be different on each
page.

In this case, I'll keep the site ID and banner inline, as they'll only have short titles that do help describe the
page in a meaningful flow of information.

<img id="bannerAd" width="600" height="75" alt="Independent, impartial advice on
mortgages, insurance ... " />

This will read as “Image, Mortgage Service Company UK, Image, Independent, impartial advice on
mortgages, insurance...” (etcetera).

Next in the visual hierarchy comes the “Quick links” list in the left-hand column, followed by another list of
links for “Free quotes” / “Contact us” / “Our hot tips”. Should this go before the main content, or after it?
One issue is that many of the links are repeated in the main content, which I might raise with the designer.
It might be better SEO to vary the link text.

Skip nav

What I'll decide at this point is to keep all the nav options together, as they are on the visual image, but to
add a “skip navigation” link for the benefit of aural readers. This simply goes right at the front of the
<body> and gives people an easy way to jump straight to the page content (which should start with a
<h1>).

Here's the link.

<body>
Skip to
content
<div id="page">

The person using a text-to-speech program could hit the standard “s” hot key to jump straight to the start
of the actual content. We'll use CSS to make the link non-visible (to people browsing visually).

It's quite common to link this type of link to a special anchor in the document, such as:

 <h1>Etc.</h1>

The anchor is invisible, as it has no contents. However... this is adding an unnecessary element, because
you can also link to an element's ID using the href=”#id” syntax. So, we'd achieve the same thing by
putting all the main content in a <div id=”content”> and save one element.

Of course, if we don't need an additional <div> for the content (which I don't think we will here), it's
possible to add the ID to the <h1> tag instead. So we'll insert the “skip” link, and assign the ID to the
Heading 1.

© Web Design from Scratch, 2008

More nav

Next item is the title for the “Quick links” list. There's no <caption> tag for use
with lists (it only applies to tables), so I'd probably use a <h2> tag here. The list can
then follow as a standard with text contents. We can either apply image-
replacement, or even change the font and force upper case text, using CSS later.

Because the left column in my design only contains links, I think I can get away
without using a special division to separate it from the main content (but I might
choose to put one in anyway, in case the client wanted to add other elements to
the side column at a later date!).

 The has the ID “quickLinks”, as that's what it is. There will never be 2 such lists
on a page. The rest is straightforward. I've left the hrefs and titles blank here. It
might be worth using different title text in those links that also feature in the main
nav.

Here's the HTML:

<h2>Quck Links</h2>
<ul id="quickLinks">

Register for free newsletter & tools
Property search
Join our mortgage club
About us
Mortgages
Protection
Insurance
Loans
Conveyancing
Cut your household bills

Next comes another list of links: “Free quotes, Contact us, and Our Hot
tips”. These are text with images beneath them. I'd be tempted simply
have these as another unordered list, but on second thoughts
semantically, they're nothing more than additional “Quick links”, are they?

A more correct approach would be to include them in the previous ,
and include properties to let you render them differently in CSS.

<ul id="quickLinks">
Register for free newsletter & tools
Property search
Join our mortgage club
About us
Mortgages
Protection
Insurance
Loans
Conveyancing
Cut your household bills
<li class="withpic" id="freeQuotesLink">Free quotes
<li class="withpic" id="contactUsLink">Contact us
<li class="withpic" id="ourHotTipsLink">Our Hot tips

The way I've approached this is to use a new class “withpic”, which relates to the layout and background
properties of these 3 links. However, I've used special IDs to identify the 3 special links individually. (Some
browsers like IE6 don't properly understand multiple classnames, so using a class in conjunction with an ID
is easier.) Because the IDs like “freeQuotesLink” actually describe what each link is, this approach is fine
semantically.

© Web Design from Scratch, 2008

Main content

Next comes the heading “Mortgage News”, which should definitely be our <h1> tag (one per page, and
describes what the page is about). We were going to add the ID “content” to the <h1> to link to it from the
skip-nav link. In fact, I've changed that to id=”startOfContent”, which does describe an attribute of the
heading (although it's not semantically perfect, as it doesn't describe what the heading is).

I've left the text in normal case, because the upper case can be applied in CSS (by applying the property
text-transform:uppercase;).

<h1 id="startOfContent">Mortgage News</h1>

Next we have 3 news items, each comprising an image, a title (which should also be a link, and should
certainly have a different colour to the normal text colour).

What's the right markup structure for this series? Are they an unordered list? A table?

I don't think an unordered (or ordered) list would be appropriate, as these are complex elements. If it were
just a list of the 3 titles, a would be absolutely right. But this isn't really a list of content elements; it's
more a series of elements that have a similar structure and format.

One option might be to use a definition list (<dl>). With a definition list, you have a series of definition
terms (<dt></dt>), each followed by a definition description (<dd></dd>). Definition lists have been in the
HTML definition since always, but have become more popular recently. They're good when you have a
series of slightly complex elements, comprising a title and further description. That does hold true in this
instance: we have a title of each mortgage news item, followed by a summary or intro to the article.

To render this as a definition list, the HTML would look like

<dl>
<dt>Interest rates set to rise</dt>
<dd>Duis laoreet commodo pede... etc...</dd>
<dt>Tips to organise your household bills in 2006</dt>
<dd>Duis laoreet commodo pede... etc...</dd>
<dt>Recommended: Alliance & Leicester</dt>
<dd>Duis laoreet commodo pede... etc...</dd>

© Web Design from Scratch, 2008

</dl>

The wrinkle comes with the images. The crux question is, Are the images part of the content? i.e. Do they
have any content value? Because if they're decoration only, we could perhaps use CSS to apply them as
background images. If they're content, then they should be in tags of their own. And, if
we've got a title, an image, and a couple of paragraphs, we can't do that using a definition list.

It's also worth bearing in mind that the format of these blocks need not always be set at what's shown in
this initial design. If the client decided to put a totally different element in this series, it could easily break
the <dl> format, which leads me to discount the <dl> as the best pragmatic solution.

What about tables? Using a table would certainly make it easy to align the contents easily.

It does seem that we have a roughly tabular data series here: a repeated pattern of title, description,
image. Now, if we were looking at product search results, I can certainly imagine rendering those in a table,
but in this instance, the structure isn't quite so fixed. For the same reason as mentioned above (throwing in
a new format), a tabular structure wouldn't be flexible enough. Also, the content isn't visually laid out in a
strict grid, which means we'd be messing around with <td rowspan=”2”> in our HTML, which is clearly too
messy (messiness is always a sign of poor semantics).

That really leaves us with a series of divs! Each one would have a <h2> for the article title, one or more
paragraphs, and an image. I would imagine that these divs should have a classname that identifies its layout
type (actually, content type). We'll leave CSS to manage the layout of the various component elements.

For a well-formed document, headings must cascade downwards from a <h1> in strict tree order,
never missing out a heading level, so you couldn't have a <h3> directly following a <h1> without
a <h2> in between.

Here's the HTML I'd like to write:

<div class="newsItemSummary">
<h2>Interest rates set to rise</h2>
<p>Duis laoreet commodo pede etc. etc...</p>

</div>

This throws up some interesting CSS challenges, which I'm confident have a solution. (What I'd do in my
CSS is put a large 100px+ padding on the left side of the div, to make any contents move over and leave
space for the image, then put the image in as position:absolute; and give it a subtle border; then finally I'd
give the div a min-height to ensure that the entire image is displayed, even if there's less content.)

So, we simply have 3 of these blocks, and below there's a disclaimer. Options for this are probably div or
paragraph (<p>). The question is, is it a logical division within the content (i.e. a <div>), or is it actually a
paragraph of body text? I think it's more a division than a paragraph, so I'll go with that, using the
classname “disclaimer” as a handle for CSS.

© Web Design from Scratch, 2008

Final HTML

Slightly trimmed to fit across the page, but you should find it clear and easy to read. If this markup makes
good sense to you, it will make good sense to screen readers, spiders, and all other types of user agent too!

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd">
<html>
<head>
<title>Mortgage Service Company, UK advice on mortgages and insurance</title>
<link rel="stylesheet" type="text/css" href="styles.css" />
</head>
<body>
Skip to content
<div id="page">
<ul id="primaryNavigation">

About
Mortgages
<liProtection
Insurance
Loans
Conveyancing
Cut your bills

<ul id="secondaryNavigation">

Log in
Site map

<h2>Quck Links</h2>
<ul id="quickLinks">

Register for free newsletter & tools
Property search
Join our mortgage club
About us
Mortgages
Protection
Insurance
Loans
Conveyancing
Cut your household bills
<li class="withpic" id="freeQuotesLink">Free quotes
<li class="withpic" id="contactUsLink">Contact us
<li class="withpic" id="ourHotTipsLink">Our Hot tips

<h1 id="startOfContent">Mortgage News</h1>
<div class="newsItemSummary">

<h2>Interest rates set to rise</h2>
<p>Duis laoreet commodo pede etc. etc...</p>

</div>
<div class="newsItemSummary">

<h2>Tips to organise your household bills in 2006</h2>
<p>Duis laoreet commodo pede etc. etc...</p>

</div>
<div class="newsItemSummary">

<h2>Recommended: Alliance & Leicester</h2>
<p>Duis laoreet commodo pede etc. etc...</p>

</div>
<div class="disclaimer">Your home is at risk if you do not keep up repayments on a loan etc...</div>
</body>
</html>

I hope this introduction to semantic HTML has convinced you that to write your own HTML this way is both
worthwhile and achievable. The discipline does present its own challenges, both on the semantics side,
and testing your CSS skills, but the more you do it the easier it gets, and the better web pages you produce.

Always remember that there's never just one perfect solution. It's a problem solving game, and it
should be fun!

© Web Design from Scratch, 2008

If you have any feedback or comments on this ebook, please feel free to email me direct at
ben@scratchmedia.co.uk, and I'll be happy to hear your thoughts.

© Web Design from Scratch, 2008

mailto:ben@scratchmedia.co.uk

	Semantic HTML
	Contents
	What is Semantic HTML?
	Always separate style from content
	Why semantically correct HTML is better
	Ease of use
	Accessibility
	Search Engine Optimisation
	Repurposing

	Comprehensive list of HTML tags with their semantically appropriate uses
	How to write better semantic HTML
	HTML first, then CSS!
	Perfect semantic correctness isn't necessarily best!
	Consider other applications of your document (other media, plus DOM manipulation)
	Semantics applies to IDs and Classnames as well as tags!
	When to use an ID, when to use a Class
	Consider using DHTML to insert tags for complex design

	Worked example
	First questions
	Initial structure
	Navigation
	Site identity and banner
	Skip nav
	More nav
	Main content
	Final HTML

